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a b s t r a c t

As genomic research becomes more complex and data-rich, artificial intelligence (AI) has emerged
as a crucial tool for processing and analyzing high-dimensional genomic data, accelerating biomarker
discovery, and enhancing genomic sequence annotations. Despite the increasing application of AI in
genomic research, challenges persist, particularly regarding the integration of biomedical knowledge
into algorithm development. We reviewed high-quality, AI-driven biomedical genomic studies from
the past five years, covering applications in disease prediction, detection, diagnosis, and treatment.
Each category highlights how different AI techniques are applied in biomedical contexts. Furthermore,
we identify current challenges and potential solutions in AI-assisted biomedical genomics. This
comprehensive review is designed to encourage collaboration among computer scientists, healthcare
professionals, and interested communities, propelling the development of AI applications that can be
smoothly integrated into routine medical services.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Genetic and genomic research has evolved from Mendel’s
nheritance studies of pea plants to a complex clinical tool with
iverse applications, including newborn screening, predictive and
iagnostic methods for diseases, and precision medicine based
n pharmacogenomic findings. Initiated in 1990 and completed
n 2003, the Human Genome Project provided fundamental in-
ormation about the human blueprint. Since then, genomics has
ccelerated the study of human biology and improved the prac-
ice of medicine [1]. In the post-genome era, efforts to apply
enomic information to biomedicine have become increasingly
ctive.
The emerging biomedical applications inspired by genomics

ave posed several challenges. Firstly, deciphering hidden infor-
ation from the whole genome, gene transcription/expression,
nd phenotypic data requires intricate non-linear modeling. Sec-
ndly, the heavy interlinking and high dimensionality of different
enomic data types exacerbate the difficulty. Noisy, incomplete,
r unmatched data with insufficient labels further increases the
ifficulty of analysis. At the same time, much genomic discov-
ry has occurred through individuals of European ancestry, with
limited representation of other populations [2]. Additionally,
hen these applications were tested in a clinical environment,
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issues such as the proliferation of variant-specific therapies and
prognostic analyses increased the complexity of implementation
for medical specialists [3].

Artificial intelligence (AI), which encompasses machine learn-
ing (ML), computer vision, neural networks, and natural language
processing, has emerged as an indispensable tool for addressing
these challenges. It empowers the processing, analysis, modeling,
and interpretation of large-scale genomic data. Across various
stages of healthcare service, AI algorithms have been employed to
answer diverse questions, from biomarker discovery studies [4,5]
to annotating genomic sequence elements [6].

Despite numerous reviews exploring the application of AI in
genetic and genomic research across various diseases [6–11],
there is still significant potential to improve the performance
and usability of AI-driven genomic applications in biomedical and
clinical settings. Two critical aspects that merit additional focus
include integrating biomedical knowledge into genomic-specific
AI, and ensuring that adequate training is provided for both the
developers and users of these applications. Several survey papers
have attempted to address these challenges from diverse per-
spectives. Some have focused on molecular medicine and systems
biology [6,7,12], while others have delved into the progress and
specific methods intersecting early multi-modal methodologies
such as regression, computer vision and genomic enrichment in
particular medical fields such as brain imaging genomics [13].
However, previous surveys have not comprehensively covered
the use of more advanced techniques, including transfer learning
and recommender systems.

https://doi.org/10.1016/j.knosys.2023.110937
https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.110937&domain=pdf
mailto:kairui.guo@uts.edu.au
https://doi.org/10.1016/j.knosys.2023.110937
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To further promote the integration of AI algorithms in
biomedicine and establish a shared comprehension of two rapidly
evolving fields – AI and genomics – we believe an up-to-date
review centered on AI algorithm development and application
in biomedical genomic analysis, will be invaluable. Therefore,
this paper aims to serve as a starting point for collaboration
among computer scientists, healthcare professionals, and other
interested communities and organizations. Our goal is to stimu-
late joint efforts in developing AI applications that integrate into
routine medical services.

This paper presents a systematic review of recent advances in
AI-driven biomedical genomic applications, which can potentially
improve clinicians’ work. We developed a framework to identify
relevant academic articles on AI-related biomedical applications.
Applying this framework specifically to genomics, we reviewed
82 high-quality, AI-driven biomedical genomic studies from the
past five years. Our analysis discusses the strengths of AI tech-
niques, examines their usability at specific stages of healthcare
for various health conditions, and addresses the challenges and
potential solutions for future research in the field.

The main contributions of this paper are:

(i) It presents a timely review of AI applications in biomedical
genomics over the past five years, emphasizing the con-
tributions of AI in enhancing disease prediction, diagnosis,
and treatment.

(ii) It devises a literature search framework for biomedical
analysis using advanced bibliometric methods.

(iii) It identifies challenges in contemporary AI-driven genomic
research and proposes potential solutions.

(iv) It serves as the training material for researchers, physi-
cians, and industry partners who are interested in the
convergence of AI and genomics, providing fundamental
knowledge and the latest applications in this field.

The rest of the paper is structured as follows: Section 2
presents a bibliometric literature review framework for AI in
medicine. Section 3 details the AI techniques applied in the ge-
nomic studies reviewed. Section 4 through 6 delve into biomed-
ical and clinical applications, covering disease prediction, early
detection, diagnosis, treatment, and prognosis analysis. Section 7
outlines current challenges and potential solutions in AI-assisted
biomedical genomics, spanning from algorithm development to
social issues. Our aim is to provide a thorough analysis show-
casing the latest trends in AI-driven genomics and equip readers
with the knowledge necessary for future progress in this domain.

2. Literature review and a framework for AI in biomedical
genomics

Electronic databases, PubMed and Web of Science, were uti-
lized to identify relevant clinical genomic applications. PubMed
is considered to be the most extensive open-source database of
biomedical literature worldwide, encompassing more than 30
million articles and online books. It is widely regarded as the
optimal data source for gathering literature related to biomedical
and life sciences [14]. On the other hand, the Web of Science is
a widely recognized multidisciplinary scholarly database, which
accumulates over 74.8 million scientific publications and concen-
trates on high impact journals [15]. To ensure comprehensive
coverage of both biomedical and computer science
domains, we have integrated data from both sources. The fol-
lowing major search keywords and MeSH terms were used to
retrieve relevant studies: artificial intelligence (and representa-
tive techniques), genom*, disease, diagnos*, treatment, precision
medicine, and personali* medicine. The keywords with an as-
terisk symbol (*) were used to include synonyms and solve the
2

issue of American and British English spelling differences. The
date range was from January 2018 to February 2023, representing
studies reported within the last five years.

The literature search process yielded 442 papers of origi-
nal research studies. Aiming to profile the research landscape
of this domain, we mapped the collected papers to the Ope-
nAlex database via digital objective identifier matching, through
this process, we obtained a collection of hierarchically-organized
concepts associated with the papers. These concepts represent
Wikipedia entries that were mapped to the research papers using
a topic modeling approach [16]. The hierarchical structure of
the relevant concepts is visually presented in Fig. 1. The figure
illustrates the identification of four distinct concept groups de-
rived from the analyzed papers. These groups are categorized as
follows: #1 biomedicine, #2 clinical issues, #3 computer science
methods, and #4 other.

Group #1 encompasses a diverse range of genomic data uti-
lized in modeling analysis and biomedical research, particularly
within the context of AI and genomics applications.

Group #2 focuses on the clinical issues that can be addressed
or improved through the application of AI in genomics. In addi-
tion to the cancers covered in Group #1, this branch highlights
several other diseases, including dementia, heart disease, autism,
and COVID-19. The inclusion of these diseases underscores the
immense potential of utilizing genomics and AI in enhancing
clinical diagnosis, treatment, and research efforts related to these
conditions.

Group #3 represents a wide spectrum of computer science
methods that are relevant to AI applications in genomics. The
prevalence indicates the popularity and effectiveness in stud-
ies exploring the application of AI in genomics. Additionally,
two other important concepts, natural language processing and
computer vision, are identified.

Group #4 presents a comprehensive analysis of various soci-
etal and pertinent issues. The utilization of AI methodologies to
enhance genomic research is not only rooted in clinical endeavors
but also holds substantial implications for population health and
the overall welfare of the public.

Fig. 2 provides valuable insights into the prevailing trends
within the application of AI techniques in the realm of genomics-
enabled clinical problems. It becomes evident that cancer re-
search continues to command the most substantial attention
across all AI methodologies. The integration of various sequencing
data types, such as gene expression, human genome, microRNA,
and DNA, as input sources for AI approaches, is a recurring prac-
tice. Within the domain of interdisciplinary studies, conventional
machine learning methods find notable applications in gene ex-
pression analysis and genome data exploration. Deep learning
architectures have been broadly applied in cancer research and
the investigation of genome data.

As shown in Fig. 3, studies had to meet the following criteria
to be eligible for inclusion: (1) full-text peer-reviewed publica-
tions in English. (2) Original studies that include both human
genomic data as input and AI techniques as methods were se-
lected, and reviews, editorials, or letters were removed. Duplicate
studies were also removed. (3) Studies published before 2018
were removed. A minimum threshold of 20 citations was set to
ensure the quality of the study. Finally, the eligible full texts
were independently screened by four reviewers (KG, MW, ZS, and
YY), who also conducted a manual search to include all relevant
studies. In total, 82 papers fitting the established criteria were
thoroughly examined and included in our analysis. Three cate-
gories, namely prediction and early detection, disease diagnosis,
treatment and prognosis, were identified among the included
papers. Under each category, AI techniques including conven-
tional machine learning, deep neural network (DNN), transfer
learning (TL), computer vision (CV), graph representation learning
(GRL), and natural language processing (NLP) were recognized,
and discussed in detail later.
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Fig. 1. The hierarchical structure of concepts showing the four groups.
. Main AI techniques used in genomic applications

In AI-driven applications, a preprocessing step is essential
efore the actual implementation of the algorithms. Data prepro-
essing, a concept well-established in Big Data, ensures that the
ata conforms to the specifications required by the AI algorithms
pplied in subsequent stages [17]. In genomics, preprocessing
ddresses challenges such as noisy and missing data, as well as
he classic ‘curse of dimensionality’ often encountered in AI. To
ddress the challenges posed by noise from various sources and
issing values, several software programs have been developed

n recent years [18–20]. There are also specific tools tailored
o handle the dimensionality issues associated with sequencing
ata [21,22].
In this section, we introduce the AI techniques used in clinical

enomic applications from a conceptual level. We emphasize how
ach method analyses knowledge from data, obtains patterns by
uilding unique models, and makes predictions and classifica-
ions on new data. CV and NLP are commonly recognized as
erception tasks in computer science [23], as their role is to in-
erpret texts and images to reveal hidden information. These two
echniques are included because of their significant contribution
o clinical genomic applications.
3

3.1. Conventional machine learning

Conventional machine learning refers to ML methods that
facilitate computer learning from a given dataset, thereby im-
proving task performance based on that learning. These meth-
ods, which include linear regression, logistic regression, deci-
sion trees, random forests (RF), support vector machines (SVMs),
and neural networks, typically employ classic statistical models
and equations to identify underlying patterns and relationships
within the data. Several recent review articles [24–26] have illu-
minated these techniques in the context of medicine, leading to
their popularity in biomedical genomic applications in numerous
COVID-19 and cancer studies.

3.2. Deep neural networks

When the number of layers between the input layer and the
output layer is large enough, we consider them as deep neural
networks. Currently, the hidden layers of DNNs range from five
to more than a thousand [27]. In AI-assisted genomic applications,
one of the most popular DNNs, convolutional neural networks
(CNNs), employ a unique architecture, convolution layers, to-
gether with pooling layers that minimize the number of network
parameters, which helps avoid overfitting [28].
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Fig. 2. The co-occurrence network of genomic/clinical and AI concepts.
Fig. 3. The literature review framework and AI-driven biomedical genomics categories.
In situations where biomedical data have been collected over
ime, recurrent neural networks (RNNs) [29] offer a solution.
hile CNNs perform exceptionally in image-related research,

hey fail to account for the time dimension. RNNs incorporate
4

recurrent connections in deep neural networks, thus capturing
the time element. However, when sequential data spans a lengthy
period, RNNs can struggle to capture features that present with
a large time gap. To tackle this, the Long Short-Term Memory
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LSTM) structure [30] and the Gated Recurrent Units (GRU) [31]
ere introduced. These models use gates to control the infor-
ation flow and are well-equipped to analyze biomedical data
ollected over extended periods, as demonstrated in a Type 2
iabetes prediction study [32].

.3. Transfer learning

Transfer learning aims to exploit the knowledge accumulated
rom data in auxiliary domains to improve learning in a target
omain that does not have sufficient labeled data or none to train
model [33]. It has three main types: inductive, transductive, and
nsupervised.
Inductive TL [34] has requirements that the target domain

ust have some labeled data and the same feature space as
he source domain, although they have different data distribu-
ions. Moreover, the quantity of labels required for training the
redictive function in the target domain highly depends on the
omplexity of the learning task, the similarity between the two
omains, and the availability of labeled information from the
ource domain(s).
In contrast to inductive TL, transductive TL [35] allows the

ource and target domains to have different feature spaces. The
ost active sub-field of transductive TL is domain adaptation,
hich deals with scenarios where there is a limited amount of

abeled source data and unlabeled target data available for train-
ng. Existing domain adaptation algorithms primarily concentrate
n reducing the distance between marginal or conditional distri-
utions through two approaches: symmetrical training, utilized
n feature-based algorithms, and asymmetrical training, used in
nstance-based domain adaptation.

Unsupervised TL [34] can learn key feature representations of
he data without target labels. Instead, the algorithm is tasked
o find underlying patterns and structures within the data to
reate a more compact and meaningful representation. These
epresentations can be thought of as compressed versions of the
ource data that preserve its essential features. One new tech-
ique used in unsupervised transfer learning is self-supervised
earning, under which the model is trained to predict certain
roperties or relationships within the data itself [36].
Transfer learning is often used to improve the performance of

achine learning models on smaller medical datasets by lever-
ging the knowledge obtained from well-labeled large datasets.
n genomics, TL shows its particular utility in cross-population
tudies [37].

.4. Computer vision

Computer vision is a discipline that employs mathematical
echniques to extract the three-dimensional shape and appear-
nce of objects in imagery [38]. The advancement of deep
earning-based computer vision architectures has found extensive
pplications across diverse industries. In the context of biomed-
cal genomic research, four popular architectures: AlexNet [39],
GGNet [40], GoogLeNet [41] and ResNet [42] are introduced.
AlexNet utilized five convolutional layers and three fully con-

ected layers, integrating strategies like ReLU activation, local
ormalization, overlapping pooling, dropout techniques, and data
ugmentation. VGGNet comprises 16 convolutional and three
ense layers [43]. Concurrently, GoogLeNet uses one-twelfth of
he parameters that of AlexNet, offering a solution for resource-
imited scenarios. ResNet emerged with a remarkably deep 152-
ayer architecture, introducing a deep residual learning
ramework to address the issue of accuracy saturation. Through
he addition of shortcut connections, it allowed for skipping

ayers during the feedforward process, ensuring effective training

5

even with hundreds of layers, without the addition of extra
parameters or computational complexity. These architectures are
frequently utilized in linking imaging phenotypes to the tumor
genetic profile [44].

3.5. Graph representation learning

Graph representation learning methods aim to encapsulate
graph data, including topology and attributes, into low-
dimensional vectors [45]. Traditional techniques such as dimen-
sion reduction [46], random walk [47,48], and matrix
factorization [49] focus on node topological similarity, but strug-
gle with scalability and context-awareness in complex, large-
scale graphs. More accurate representation models have been
introduced through various graph neural network (GNN) ar-
chitectures. For a deep dive into GRL and GNNs, see surveys
[50–52]. GRL techniques have broad applicability in genomics.
They enable the conversion of genomic sequencing data into
graph structures by considering gene associations or expression-
based similarities [52–54]. Moreover, the incorporation of sup-
plementary molecular components or biomedical entities [55,56]
and their established associations into the graph models enables
the formulation of heterogeneous graph representations. The het-
erogeneous networks are particularly useful when dealing with
various types of genomic data [57].

3.6. Natural language processing

Natural Language Processing focuses on developing techniques
for human–computer interaction through natural language. Its
core objective is to analyze and process vast amounts of unstruc-
tured textual data, enabling machines to comprehend human lan-
guage and generate human-like responses [58]. The main tasks of
NLP development involve realizing natural language understand-
ing and generation [59]. To achieve these outcomes, a variety
of language models and neural network architectures have been
developed. For more on NLP technical progress, refer to [60,61]. In
genomic analysis, NLP primarily serves as an auxiliary technique
aimed at transforming potentially relevant textual data, such as
Electronic Health Records (EHR), into computable features. These
features can then be applied to Genome-Wide Association Studies
(GWAS) and Phenome-Wide Association Studies (PheWAS).

The following three chapters will offer a comprehensive re-
view of biomedical genomic applications with a focus on the AI
techniques introduced in this chapter. A mind map, depicted in
Fig. 4, is provided to guide readers.

4. AI-driven prediction and early detection through genomic
data

In healthcare, disease prediction and early detection are crit-
ical in clinical decision-making, enabling physicians to identify
and manage patients at high risk of adverse outcomes. Con-
ventional machine learning, deep neural networks, and trans-
fer learning have all found applications in prediction and early
detection.

4.1. Conventional machine learning for prediction

Genomic analysis for disease predictions has often employed
conventional ML classification and regression methods. Notable
models were developed to study SARS-CoV-2. Shrock et al. [62]
used an oligonucleotide library incorporating multiple strains’
proteomic profiles of SARS-CoV-2 and human patient immune
responses, analyzed via a gradient boosting algorithm and logistic
regression classifier to establish the VirScan platform. This differ-
entiated between severe and mild symptom cases, aiding disease
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Fig. 4. A mind map of the AI techniques and biomedical topics reviewed.
everity prediction. Wang et al. [63] sequenced over 500,000
ARS-CoV-2 genomes, using gradient-boosting trees and protein–
rotein binding data to predict mutation changes and their im-
act on COVID-19 severity.
Cancer stage and survival predictions using genomic data have

lso been investigated. One study employed a regularized non-
egative matrix factorization method using RNA-seq and protein
nteraction data from various breast cancer stages to predict
atient outcomes and aid in personalized care planning [64].
breast cancer protein classification study found a multilayer

erceptron neural network with one hidden layer of 20 neurons
o be the most effective [65]. In gastric cancer, a binary logistic
egression model evaluated mRNA signatures for lymph node
etastasis prediction [66], while the LASSO method identified
iomarkers for differentiated thyroid cancer [67]. Random Forest
as used for a prostate cancer progression biomarker study [68].
Conventional ML has been widely used in neurological condi-

ion studies. For instance, a Bayesian network identified a five-
old increase in amyotrophic lateral sclerosis-associated genes
ompared to GWAS-discovered loci [69]. Gradient-boosted de-
ision trees were used for Parkinson’s disease gene prediction
nalysis [70], and a neural network predicted multiple sclerosis
isk based on single nucleotide polymorphisms [71].

Other applications, like kidney transplants [72], post-
enopausal osteoporosis [73], and atherosclerosis [74], also used
nsemble methods and SVMs for genetic biomarker identification.
espite the widespread adoption of conventional ML due to
ts simplicity, these studies often lack comprehensive model-
uilding analysis, which can impede larger cohort experiments
n later stages.

.2. Deep learning for prediction and early detection

Deep learning is a valuable tool for genomic analysis in pre-
icting common chronic diseases. In the Type-2 diabetes predic-
ion application conducted by Srinivasu et al. [75], RNNs were
elected to quickly memorize features from previous cycles and
rocess genomic data. Bidirectional LSTM and GRU were tested
sing data from the UK Biobank. The results demonstrated that
NNs outperformed other AI algorithms in predicting the possi-
ility of Type-2 diabetes occurring in the future.
In the field of cancer research, DNN-based applications have

een applied for detection purposes. Zhang et al. [76] used cell-
ree DNA fragmentomics to achieve high sensitivity and speci-
icity for the early detection of primary liver cancer. Extracted
6

bioinformatic features were inputted into three algorithms:
gradient-boosting machine, RF, and DNN, with DNN being able to
identify the most significant features. Loeffler et al. [77] trained
a deep neural network to detect FGFR3 mutations in bladder
cancer using histology images. The proposed system using Shuf-
fleNet [78] with two output layers could be used as a diagnostic
tool for bladder cancer detection. Compared to basic machine
learning methods, deep learning approaches enhance the per-
formance of genomic-based disease prediction by introducing
novel features. However, these applications also demand more
computational power.

4.3. Transfer learning for disease prediction

Transfer learning has enhanced the predictive performance for
the risk of developing numerous diseases by adapting pre-trained
models to the specific characteristics of healthcare data and fine-
tuning them on smaller, domain-specific datasets. For example,
Jonsson et al. [79] applied TL to brain age prediction using a
deep CNN pre-trained on a dataset of healthy Icelanders. They
were able to improve the accuracy of brain-age prediction on two
different datasets through fine-tuning, thereby demonstrating the
potential of transfer learning to enhance clinical prediction tasks
in healthcare.

Transfer learning has also been utilized to predict trends in
patient data, providing new insights into clinical findings from
genotypic information. Dong et al. [80] enhanced the accuracy
of predicting functional variants in regulatory elements by incor-
porating knowledge from large genomic datasets using transfer
learning. Similarly, Zhuang et al. [81] and Zhou et al. [82] ap-
plied TL to fine-tune models trained on extensive datasets to
improve predictive performance on enhancer–promoter interac-
tions and to impute missing RNA-sequencing data, respectively.
Taroni et al. [83] introduced a transfer learning framework called
MultiPLIER for predicting rare diseases using large-scale gene
expression datasets. This improved the description of biological
processes related to disease severity. These methodologies under-
score the effectiveness of transfer learning in linking molecular
features to phenotype, thereby enhancing our understanding of
complex diseases and potential therapeutic targets in genomic
research.

5. AI-driven disease diagnosis through genomic data

Early disease detection is a pivotal aspect of improving patient
outcomes, and genomic data can provide significant assistance in
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his process, potentially acting as a diagnostic tool in clinical prac-
ice. Algorithms utilizing conventional machine learning, trans-
er learning, and graph representation learning have been ex-
lored as potential early detection and diagnostic tools. Further-
ore, graph neural networks and natural language processing
ave demonstrated their capabilities in gene–disease association
tudies.

.1. Conventional machine learning for disease diagnosis

Conventional ML methods have been implemented in various
iseases to assist the diagnostic process. In a COVID-19 study,
he VirScan platform leveraged a gradient boosting algorithm
nd a logistic regression classifier to ascertain current or prior
ARS-CoV-2 virus infection, achieving 99.1% sensitivity and 98.4%
pecificity [62]. A similar logistic regression classifier identified
ifferentially expressed genes for sepsis-induced acute respira-
ory distress syndrome [84]. ML can also pinpoint chronic pain
ocations and contributing genes. A probabilistic neural network
apped the dorsal root ganglion from mouse models to a pri-
ate model and related Genome-Wide Association Study [85].
F and neural networks have been instrumental in the diagnos-
ic process, uncovering novel genetic risk factors for abdomi-
al aortic aneurysms [86], sarcopenia [87], and non-obstructive
zoospermia [88].
Cancer diagnosis is another key application of AI-assisted ge-

omic analysis. A study used a stacked ensemble machine learn-
ng model for early liver cancer diagnosis [76]. Although prior
ethods using cell-free DNA had low sensitivity despite their
on-invasive nature, researchers improved model performance
y constructing a generalized linear model and enhancing it
ith ensemble models, surpassing the original design’s efficacy.
nsemble models, along with SVMs and shallow neural networks,
ave been implemented as diagnostic tools in leukemia [89],
reast and lung cancer [90,91], endometrial carcinoma [92], and
arious combinations of cancer types [93,94]. The intuitiveness
nd ease of use of conventional ML algorithms, courtesy of con-
enient packages in popular programming languages, have made
t common to compare several predefined conventional ML algo-
ithms within a single study.

.2. Transfer learning for disease diagnosis

Transfer learning has showcased its remarkable potential in
mproving diagnostic accuracy in healthcare. Incorporating
omain-specific knowledge, TL not only improves model inter-
retability but also supports clinical decision-making. The field of
ancer detection has particularly benefitted from transfer learn-
ng, as it has been utilized to improve the accuracy of detecting
ecurrent cancer evolution and identifying recurring mutations.
pecifically, Caravagna et al. [95] employed a TL approach, utiliz-
ng deep convolutional neural networks pre-trained on extensive
enomic datasets and subsequently fine-tuned on multi-region
umor sequencing data. This resulted in improved accuracy in
dentifying recurrent mutations and inferring their sequence of
ccurrence. Furthermore, a TL-based algorithm, CTC-Tracer, was
eveloped to address the distributional shift between primary
ancer cells and circulating tumor cells (CTCs) [96]. This allowed
he transfer of lesion labels from the primary cancer cell atlas to
TCs, thereby enhancing the detection of cancer types using CTCs
btained from liquid biopsies.
Transfer learning has also been employed in fields beyond

ancer. For instance, Ge et al. [97] studied the role of circu-
ar RNAs in non-obstructive azoospermia, offering valuable in-
ights into the molecular mechanisms underpinning the condi-

ion and underscoring the potential of circRNAs as diagnostic and

7

therapeutic targets in male infertility. As such, transfer learning
has emerged as a promising method for improving diagnostic
accuracy in healthcare, proving its efficacy across a variety of
disease-diagnostic tasks. Integrating domain-specific knowledge
facilitates clinical decision-making and enhances model inter-
pretability.

5.3. Graph representation learning for disease diagnosis and subtype
classification

GRL techniques have been effectively utilized in various ge-
nomic biomedical graph datasets to facilitate clinical disease
diagnosis. An illustrative example can be found in the work
of [98], where graph attention networks were employed on
single-cell RNA sequencing data for the purpose of diagnos-
ing multiple sclerosis. The researchers curated a comprehensive
dataset comprising 60,667 single-cell samples obtained from
individuals affected by multiple sclerosis and proceeded to con-
struct K-nearest neighbor graphs. By leveraging the graph at-
tention network model, they attained an impressive diagnostic
accuracy of 92% through the classification of individual cells.
Furthermore, Ramirez et al. [99] introduced a novel architecture
based on graph convolutional networks (GCNs) to address the
multi-class classification of cancers for diagnostic purposes, uti-
lizing gene expression data and protein–protein interaction (PPI)
data. The researchers transformed the original RNA sequencing
data from 10,340 cancer samples and 731 normal tissue samples,
along with the PPI data, into four distinct biological graphs.
Subsequently, the GCN model was employed to perform the
downstream multi-class classification task. The outcomes of their
investigation showcased classification accuracies ranging from
89.9% to 94.7%, thereby highlighting the substantial value of non-
coding gene regulations in disease classification for diagnostic
purposes.

In addition to distinguishing between healthy individuals and
those with illnesses, the differential diagnosis of disease subtypes
holds significant importance due to the varying treatment ap-
proaches and prognoses associated with different subtypes. GRL-
based dimensionality reduction techniques have demonstrated
their efficacy in identifying cancer subtypes. This can be exem-
plified by the work conducted by Rhee et al. [55], who developed
a hybrid model that integrates a graph convolutional network
and a relation network. The aim was to learn vector represen-
tations for patient gene expression profiles. The approach was
applied to a cohort of 983 breast cancer patients encompassing
four subtypes: Luminal A, Luminal B, HER2, and Basal-like. The
hybrid model achieved an overall accuracy of 83.19% in correctly
classifying the subtypes. Moreover, Wu et al. [100] collected gene
expression data from 402 patients diagnosed with diffuse lower-
grade glioma. Through unsupervised clustering analysis, they dis-
covered three distinct immune subtypes: Im1, Im2, and Im3.
Employing graph learning-based dimensionality reduction tech-
niques on the data, they revealed the presence of intra-cluster
heterogeneity within the Im2 subtype. Similarly, Li et al. [54] con-
ducted unsupervised clustering analysis on gene expression data
from a cohort of 1368 patients with squamous cell carcinoma.
The clustering analysis unveiled six immune subtypes. To explore
the intricacies within these subtypes, the researchers applied
a graph structure-based dimensionality reduction method. The
results revealed the underlying tree structures of patient immune
profiles and identified intra-cluster heterogeneity within immune
subtypes 1, 2, 4, and 6. By utilizing GRL-based dimensional-
ity reduction techniques, these studies showcase the capacity
to identify disease subtypes, unravel intra-cluster heterogeneity,
and shed light on the complex nature of immune profiles in
various cancer types.
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.4. Graph neural networks for gene–disease association prediction

Identifying disease genes that lead to the onset and pro-
ression of diseases is a long-time challenging issue due to the
arge volume of gene pleiotropy and limited known pathogen-
sis for diseases. The guilt-by-association concept proposed in
ecent biomedical studies indicates that genes with similar fea-
ures to the causative genes are more likely to be associated
ith diseases [101]. Inspired by that, leveraging the identified
ene–disease associations to learn from genomic data for dis-
overing new candidate disease genes and prioritizing them for
urther clinical investigation [101–105]. This task is presented
s a link prediction (or recommendation) issue in current most
esearch works with graph data and GRL techniques dominantly
sed. The input data is formulated by homogeneous or heteroge-
eous nodes that consist of genes, diseases, and other biomedical
ntities such as phenotypes, proteins, chemicals, etc. Links con-
ecting disease to gene nodes can originate from genome-wide
ssociation studies, literature reports, or the integration of multi-
le sources [106,107]. Moreover, the inclusion of heterogeneous
ssociations, such as disease similarity [101], gene similarity,
isease–phenotype associations [103], and gene–chemical asso-
iations [108], can provide additional information for context-
ware network representation.
Multiple GRL techniques were employed in the present in-

estigation, utilizing diverse types of input networks, resulting
n varying prediction accuracy depending on the chosen input
etwork construction scheme and GRL techniques used. In a
tudy conducted by Rhee et al. [55], disease and gene similarity
etworks were individually constructed, and their embeddings
ere learned using graph convolutional networks. Subsequently,
he disease and gene embeddings were concatenated pairwise
o predict association scores between them. Another research
ndeavor by Wu et al. [100] aimed to integrate disease and
ene nodes into the input network, alongside symptom and gene
ntology nodes, thereby forming a heterogeneous network input.
urthermore, studies such as [54] expanded upon this approach
y incorporating phenotype and pathway nodes into the hetero-
eneous network, utilizing identified associations from biomedi-
al databases. By employing GRL techniques on the constructed
raphs, it becomes possible to align disease and gene vector
epresentations within the same spatial vector space, thereby
acilitating downstream tasks, including gene–disease association
lassification and prediction. However, it is important to note that
he development of an appropriate input network and the se-
ection of suitable GRL techniques necessitate further exploration
nd investigation.

.5. Natural language processing for genome and phenome associa-
ion analysis

The utilization of NLP techniques in genomics has led to sig-
ificant advancements in computational phenotyping, which is
onsidered a crucial application within this domain. In the early
tages, computational genotyping approaches heavily relied on
eyword search and rule-based methods [109]. However, recent
evelopments in NLP, such as the emergence of deep learning
rchitectures, text embedding techniques, and language models,
ave transformed phenotyping into a text classification task. Con-
equently, novel NLP methods have been proposed to yield more
ccurate phenotyping results.
For instance, in a study conducted by Zhang et al. [110], an

nsupervised deep learning model was developed to automati-
ally annotate patient phenotypes within EHRs. The researchers
ypothesized that the semantic content of EHRs contains valuable
nformation about phenotypic abnormalities. To capture this in-
ormation, they constructed an auto-encoder model augmented
8

with a classifier, which facilitated the training of semantic rep-
resentations of EHRs. This approach enabled the identification of
phenotypic abnormalities that possess greater semantic signifi-
cance within EHRs. Another notable study by Yang et al. [111]
proposed the use of word- and sentence-level CNNs for pheno-
typing patient EHRs. This method allowed users to assess the
semantic contributions of individual tokens and provided a cer-
tain level of interpretability to the phenotyping results based on
token frequencies and categories. By incorporating these mecha-
nisms, researchers were able to gain insights into the phenotypic
characteristics present within patient EHRs.

Within the realm of genomic studies, cohorts derived from
computational phenotyping play a crucial role in enabling sub-
sequent GWAS and PheWAS. GWAS investigations establish con-
nections between genomic data and the analyzed EHR outcomes,
thereby uncovering associations between specific genes and phe-
notypes [112,113]. Conversely, PheWAS endeavors to examine
phenotypes associated with particular genetic variants [114,115].
These association studies are of utmost importance in elucidating
the underlying mechanisms behind disease onset and progres-
sion.

By leveraging computational phenotyping cohorts, researchers
can effectively bridge the gap between genomic information and
clinical outcomes, providing valuable insights into the relation-
ship between genes and phenotypes. GWAS studies allow for the
identification of genetic variants that are statistically associated
with specific traits or diseases, thereby potentially shedding light
on the genetic underpinnings of complex phenotypic traits. On
the other hand, PheWAS investigations facilitate the exploration
of diverse phenotypic manifestations that are linked to a partic-
ular genetic variant, enabling a comprehensive understanding of
the impact of genetic variations on health and disease. These as-
sociation studies serve as crucial tools in unraveling the complex
interplay between genetic factors and phenotypic expressions,
ultimately contributing to our understanding of disease etiology,
progression, and potential therapeutic interventions.

In contrast to conventional genomic investigation approaches
that necessitate manual annotation and phenotype extraction,
the utilization of NLP techniques in research endeavors provides
notable advantages in terms of time efficiency and efficacy. A
prime illustration of this paradigm is exemplified in the schol-
arly investigation conducted by Clark et al. [116], wherein an
NLP system was developed to extract intricate phenotypic char-
acteristics from electronic health records of pediatric patients
afflicted with genetic disorders. The researchers amalgamated the
outcomes of genome sequencing with the degree of similarity
between the patient’s extracted phenome and the anticipated
phenotypic attributes of various genetic diseases. Consequently,
this fusion enabled the generation of a comprehensive ranking
score, facilitating the diagnosis of genetic diseases.

6. AI-driven treatment and prognosis through genomic data

Genomics plays a vital role in personalized medicine by guid-
ing the design of individualized therapies and providing insights
into disease prognosis. All six main types of AI techniques men-
tioned in Section 3 have been implemented in AI-assisted treat-
ment and prognosis analysis studies.

6.1. Conventional machine learning for treatment design and prog-
nosis analysis

The use of conventional ML has been experimented with to
perform classification and regression tasks. In a COVID-19 treat-
ment study, Carapito et al. [117] highlighted biologically relevant
genes that could be targeted for personalized medical treatment.
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even machine learning algorithms were employed to calculate
nformative features using whole genome sequencing and RNA-
eq data. The top 600 genes were selected for further analysis
sing a Bayesian belief network. The findings suggested that these
enes were potential drivers in severe SARS-CoV-2 infections,
hereby serving as therapeutic targets to improve COVID-19 treat-
ent. A similar combination of conventional ML methods was
pplied in esophageal squamous cell carcinoma [118], yielding a
anked list of 17 prognostic molecules.

The treatment of cancer can be greatly enhanced with the aid
f AI applications. In a notable study, Xiao et al. [119] explored the
elationship between alterations in metabolic products and ge-
etic mutations within breast cancer tissue. Through a combined
pplication of LASSO and SVM algorithms, distinct subtypes of
reast cancer were identified via these correlations, thus unveil-
ng potential novel therapeutic targets. Additionally, a gene sig-
ature study conducted on stage I lung adenocarcinoma patients
tilized decision trees to predict clinical outcomes and therapeu-
ic responses [120]. Analyses of cancer stages in patients with
ung adenocarcinoma [121] and hepatocellular carcinoma [122]
ere performed using shallow neural networks. Moreover, in an
ffort to improve renal cancer treatment, Motzer et al. employed
NA-seq to distinguish different subtypes of the disease [123].
tilizing a non-negative matrix factorization algorithm and a ran-
om forest, they successfully clustered each subtype, unmasking
istinct genetic mutations that can be specifically targeted in
ersonalized therapies.
ML algorithms have also been applied to treatment plan de-

elopment for less common diseases in biomedical genomics. For
nstance, one study sequenced the gut microbiome of patients
ith major depressive disorder (MDD) and healthy controls to

dentify potential treatment targets [124]. RF and the Boruta ML
lgorithm revealed differences between the biomarkers of MDD
atients and controls, indicating potential bacterial targets for
reating MDD. The classification of myelodysplastic syndromes
nd their subtypes is challenging with current disease classifi-
ation guidelines [125]. Relying solely on morphological features
esults in low interobserver reproducibility due to the qualitative
ature of identification descriptions. To understand genotype–
henotype correlations, 47 genes were screened and processed
sing Bayesian network analysis and Dirichlet processes. The re-
ulting subtype clusters were analyzed using multivariate logistic
egression to discern the effects of each genomic abnormality
n the phenotype. This ability to easily classify subtypes could
ssist clinicians in making prognostic predictions and therapeutic
ecisions.

.2. Deep learning for treatment and prognosis

DNNs have been implemented in the treatment phase of sev-
ral diseases, such as cancer and COVID-19. Genetic alterations
n tumors are the key to precision medicine for cancer treatment.
ather et al. [126] proposed a pan-cancer genetic alteration de-
ection workflow. ShuffleNet was compared to other networks,
ncluding DenseNet [127], Inception [41] and ResNet, and this
ightweight DNN not only demonstrate the best performance but
lso offered a straightforward solution for practical applications
sing mobile platforms. In cancer treatment, DNNs were applied
n the prediction of neoantigens, which are one of the primary
argets of immunotherapies. Sullivan et al. presented epitope
iscovery in cancer genomes (EDGE) to identify the neoantigens
rom routine clinical specimens [128]. EDGE contains a multilayer
eural network integrating allele-interacting and non-interacting
eatures based on prior knowledge of human leukocyte antigens.
dditionally, a novel DNN architecture was proposed for breast
ancer prognosis prediction using both gene expression data and
linical records [129].
9

DNNs were used for drug response classification and repur-
posing. Identification of therapeutic biomarkers is crucial to per-
sonalized anti-cancer drugs. A hybrid deep learning model, Deep-
Resp-Forest, was proposed, where RFs were assembled in a DNN
structure to predict drug sensitivity using gene expression and
copy number alteration as inputs [130]. Deep-Resp-Forest was
tested on 15 drugs with 400 input samples and compared to a
standard SVM approach to show the excellent discriminative abil-
ity. In another drug-related study, a network-based deep learning
methodology, called deepDTnet, was developed by Zeng et al.
for drug repurposing [131]. deepDTnet used a PU-matrix com-
pletion algorithm in a DNN structure that consists of genotypic
and phenotypic data trained on 732 FDA-approved drugs, show-
ing high performance in the drug–target interaction application.
deepDTnet is also capable of uncovering chemical structures,
semantic relationships, and molecular targets of different types
of drugs. Another drug reposition application used similarity net-
work fusion and collective variational autoencoder [132]. Two
case studies showed potential drugs for Alzheimer’s disease and
Juvenile rheumatoid arthritis.

Additionally, DNN-based prediction models have been de-
veloped to reveal protein–protein interactions, which contain
significant information about biochemical pathways that can
guide drug discovery. However, the challenge of binding affinity
changes after mutation remains in this area of research. Wang
et al. [133] developed a topology-based network tree with a
hybrid deep learning algorithm that merges CNNs and gradient-
boosting trees to predict PPIs. Another deep learning tool, Prism-
Net, was created to predict interactions between RNA-binding
proteins (RBP) and RNA function [134]. By building convolutional
layers that extract features from RBP data, PrismNet can explain
the sequential and structural information of the RBP–RNA inter-
action. Both models have been applied to COVID-19 research. The
former focused on the evolution of viral variants to predict the
future trend of vaccine discovery [135], and the latter accurately
predicts host proteins that bind to the SARS-CoV-2 [136].

6.3. Computer vision for prognosis analysis

COVID-19 is a disease that exhibits a complex and diverse
range of clinical symptoms [137]. The severity of infection can
vary significantly between individuals, with some showing flu-
like symptoms or even being asymptomatic, while others with
similar age, sex, and phenotypic characteristics may experience
acute respiratory distress syndrome and require intensive care. In
a study that recruited 47 critical patients, 25 non-critical patients,
and 22 healthy controls, a specific gene, ADAM9, was identi-
fied as a driver of COVID-19 severity using DNN together with
other machine learning algorithms [117]. SARS-CoV-2 variants
can also cause different levels of severity between individuals.
Wang et al. [63] integrated CNNs and gradient-boosting trees
to understand the impact of viral mutations on protein–protein
interactions and infectivity. The hybrid DNN model solved the
issue of complex input data in the form of 3D structures.

The prognosis of cancer is studied at the molecular level,
where the genome drives the genetic and molecular abnormali-
ties in tumors [138]. Prognosticators of colorectal cancer were in-
vestigated using deep CNNs from histology slides and correlated
with the gene expression signature of cancer-associated fibrob-
lasts, which is the gold standard for cancer staging [139]. Five
popular CNN models (VGG19, AlexNet, SqueezeNet, GoogLeNet,
and ResNet50) were initially selected, and VGG19 yielded the best
performance with an acceptable training time.

To predict the cancer survival outcome, Chen et al. [140]
developed a multimodal fusion strategy that integrates image
and genomic features. This supervised learning approach was
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alidated using glioma and clear cell renal cell carcinoma datasets
rom the Cancer Genome Atlas. The multimodal fusion strat-
gy is particularly useful in clinical applications as the features
xtracted from different sources can be interpreted by provid-
ng the feature importance shifts. In another CV-based cancer
tudy, the association between histopathological patterns and
enomic alterations was analyzed using a deep transfer learning
pproach [141]. The correlation between images and genomes
elped clinicians understand the tumor composition and locate
umor-infiltrating lymphocytes, which can be used as part of
mmune therapy to improve overall outcomes.

.4. Transfer learning for treatment and prognosis

Identifying the most effective drugs for individual patients
ased on their genetic and molecular characteristics is a crucial
spect of cancer treatment. However, crafting accurate drug sen-
itivity prediction models remains a challenge due to the complex
nteractions between drugs and cancer cells. Transfer learning has
een suggested as a potential solution to enhance drug sensitivity
rediction accuracy. For instance, Turki et al. [142] proposed a
L algorithm for drug sensitivity prediction, leveraging the con-
ept of domain adaptation from auxiliary data on a related task.
heir results exhibited improved drug sensitivity prediction and
tatistical significance in several diseases.
Transfer learning has also shown potential in cancer prognosis

nalysis. Yogananda et al. [143] utilized an image-based deep-
earning framework to predict the methylation status of the
GMT promoter in glioma patients. As an important prognos-

ic marker, the MGMT promoter methylation status can guide
reatment decisions in glioma patients. By fine-tuning a pre-
rained DNN on a small dataset of glioma patients using TL,
he authors achieved high accuracy in predicting the MGMT
romoter’s methylation status. Additionally, Zhang et al. exam-
ned the clonal architecture of mesothelioma and its impact on
rognosis and tumor microenvironment [110]. The authors used
ingle-cell DNA sequencing to identify clonal heterogeneity in
esothelioma samples and applied TL to classify subpopula-

ions based on their gene expression profiles. They discovered
hat clonal architecture has prognostic implications, with tumors
ominated by a single clone having a better prognosis.

.5. Graph representation learning for treatment and prognosis

The utilization of GRL techniques in the domain of disease
reatment involving graph inputs has shown significant potential.
he study conducted by Zong et al. [144] focused on drug–target
ssociation tasks within biomedical entity networks encompass-
ng seven distinct entity types, namely disease, drug, target, side
ffect, variant location, pathway, and haplotype, along with their
ocumented biomedical associations. To accomplish this, the au-
hors employed Node2vec, a classical yet straightforward GRL
echnique, to generate network embeddings and perform classi-
ication and prediction tasks for drug–target associations. Specif-
cally, they evaluated their approach on 75 drug–target associa-
ions related to 20 diseases, achieving Area Under Curve scores
bove 0.9 for multiple drug–target prediction tasks. Apart from
roposing a methodological framework for drug–target associ-
tion analysis, their study also demonstrated the effectiveness
f employing different construction schemes by conducting a
omparative evaluation of performance across 32 subnetworks.
otably, the Drug–Target–Pathway–Side effect–Variant location
etwork emerged as the most effective in this regard, providing
vidence for future research endeavors to determine the optimal
ormulation of such a network within this task domain.
10
Survival prediction is non-trivial in disease prognosis analysis
and presents a complex task. In an extensive study conducted
by Chen et al. [140], GCNs were utilized to extract cell histo-
logical features, which were subsequently fused with genomic
features. The researchers introduced a methodological framework
termed ‘‘Pathomic Fusion’’ to effectively integrate multimodal
features obtained from histopathology and genomics, thereby
facilitating cancer prognosis prediction. To extract cell graphs
from histology images, a K-nearest neighbors algorithm was em-
ployed. Subsequently, graph convolutional networks were uti-
lized to learn the corresponding histological features. The original
histology image features, cell graph features, and genomic fea-
tures were then combined using the Kronecker product, along
with a gate-based attention mechanism. The efficacy of the pro-
posed methodology was validated through two distinct survival
prediction experiments, focusing on glioma and clear cell renal
cell carcinoma. These experiments demonstrated the capability
of the Pathomic Fusion framework to successfully predict sur-
vival outcomes in these specific cancer types. This study demon-
strates the utilization of graph convolutional networks and the
Pathomic Fusion framework for integrating multimodal features
from histopathology and genomics, ultimately enabling accurate
survival prediction in cancer prognosis analysis.

6.6. Natural language processing for treatment design

Electronic health records text mining holds considerable po-
tential for enhancing the process of selecting and evaluating clin-
ical treatment decisions. Targeting this trajectory, NLP techniques
can serve as a bridge, unveiling latent genetic characteristics
embedded within the clinical text, thereby facilitating the inves-
tigation of treatment-related objectives. For instance, a recent in-
vestigation [145] employed Term Frequency - Inverse Document
Frequency and word embedding techniques to extract pertinent
textual features related to genetic testing from clinical progress
notes of cancer patients. These extracted features were subse-
quently utilized as inputs for classification models, enabling pre-
dictions regarding potential alterations in genomic-related treat-
ment for individual patients. This study elucidated the utility of
an automated NLP workflow in evaluating the efficacy of genetic
testing in optimizing patient treatment adjustments.

In a similar vein, Zhao et al. [146] employed an NLP-based
approach to investigate the correlation between the genetic mu-
tation status of BRCA1/2 and treatment choices in the context
of breast cancer. The researchers utilized rule-based techniques
and random forest tree methods to extract and classify relevant
textual descriptions found in clinical notes that pertained to the
specific genetic mutation. By leveraging these extracted textual
features, they conducted a classification analysis to characterize
the BRCA1/2 genetic mutation status and subsequently exam-
ined the association between the prescription of poly-ADP ribose
polymerase inhibitors and the identified mutation information.
Furthermore, they scrutinized the extent to which the identified
mutation information aligned with clinical treatment decisions.

7. Challenges in AI-driven biomedical genomics

7.1. Machine learning algorithms specifically designed for genomic
analysis

As previously stated, the progress and potential of AI-assisted
genomic applications in tackling clinical problems such as disease
prevention, screening, prediction, detection, and prognosis anal-
ysis exemplify the promising synergy between AI and genomics.
These tools have the potential to significantly enhance healthcare
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uality. However, several unresolved challenges must be over-
ome before these AI-assisted genomic tools can substantially
nfluence everyday clinical practice.

Firstly, the majority of AI-assisted biomedical genomic appli-
ations operate in a ’Plug and Play’ mode. Conventional machine
earning methods and popular computer vision architectures are
he most commonly used AI techniques, mainly due to the avail-
bility of abundant open-source codes and online toolboxes. Once
research question is proposed, researchers can conveniently

nput genomic data into these models, generating outputs directly
pplicable to disease prediction and classification. However, with-
ut proper ’configuration,’ the performance of these ’Plug and
lay’ applications can be inconsistent, and their usability may be
estricted. Therefore, designing genome-specific machine learn-
ng algorithms that address prevailing challenges in current ge-
omic research is paramount for the future of AI-based genomics.
hese challenges include the disproportionate representation of
ertain populations and the questionable data quality resulting
rom sequencing technologies and medical records.

To address these challenges, we can look to the successful
pplications of CV and NLP in medicine as instructive examples.
edical image segmentation once required manual tracing of
undreds of slices to form a diagnostic conclusion. With the
ssistance of CV algorithms, it is now possible to achieve higher
ccuracy than human experts in a matter of minutes. More re-
ently, computer vision applications have explored the multi-
odal approach, resulting in a further increase in performance
y integrating medical images with data from other resources
uch as physiological signals and clinical notes. Multimodal rep-
esentations unify data from different modalities into the same
ector space for general downstream tasks [147]. Task-specific
lgorithms have been developed using supervised [148], unsu-
ervised [149], zero-shot [150], and transformer-based learn-
ng [151]. By applying similar strategies with the inclusion of
enomic information, these AI-driven applications are expected
o reach new heights.

For downstream tasks in CV and NLP applications, a vast
umber of products have been developed by not only large cor-
orations like IBM and Google but also startups such as Viz.ai.
or instance, Viz.ai’s Vascular Suite, which combines medical
mages with clinical data and electrocardiograms to search for
uspected vascular diseases, has demonstrated a sensitivity of
4.2% and a specificity of 97.3% in real-world clinical studies
hat collected 1303 CT scans [152]. To replicate this success
n genomics, collaborating with clinicians to gather real-world
vidence that validates performance is essential to pave the way
or acceptance in clinical settings.

Based on the previous review, it has become evident that
ransfer learning and graph representation learning demonstrate
utstanding performance across these tasks. These methodolo-
ies, with their inherent capabilities of handling complex data
tructures and leveraging pre-existing knowledge, have proven
uperior in managing complex genomics data [153]. This rev-
lation points to an exciting direction for future research and
pplication in genomics and precision medicine. We strongly ad-
ocate for the increased use and exploration of these techniques
n addressing genomic and biomedical challenges.

.2. Building knowledge base in biomedical genomics

Although the development of AI algorithms is progressing at a
apid pace, their successful implementation in practical settings
eavily depends on the quality of the data used for training. This
ssue is further complicated in the field of biomedical genomics
or two reasons: the availability of vast amounts of highly sensi-
ive data and the limitations of researchers’ expertise in handling
ultifaceted problems.
11
Today, biomedical genomic analysis goes beyond merely un-
derstanding genotypic data. The sources of data are diverse, rang-
ing from medical images to text-based data such as clinical notes,
academic publications, regulatory documents, and even ontolo-
gies that represent consensus views of knowledge in biology
and medicine. The first challenge lies in resolving licensing is-
sues associated with integrating data collected and stored at
different organizations, which may include Information and Com-
munication Technologies departments from hospitals, research
groups in universities, laboratories funded by research institutes,
and private biotechnology companies. Once all parties reach an
agreement, the database structure must be designed to accom-
modate the data processing conventions of AI algorithms. As
noted in the above sections, the algorithms developed over the
past five years have primarily focused on single data formats
due to limited accessibility to comprehensive medical data. By
fostering collaborations between research, clinical, and commer-
cial bodies, the integration of high-quality medical data from
different sources using multi-modal AI algorithms can enhance
system performance. This comprehensive knowledge base can
serve as the foundation of a recommender system [154], provid-
ing personalized medical service recommendations to alleviate
the burden on healthcare systems. Advanced multilayer network
embedding algorithms have shown their capabilities in improving
the accuracy of recommendations [155]. Such a system can not
only streamline the decision-making process but also enhance
patient care by offering tailored medical advice.

From a user’s perspective, a multisource knowledge base should
be designed to be accessible without necessitating extensive
domain knowledge. This can be achieved by developing a user-
friendly graphical interface, supplemented by a comprehensive
manual and easy-to-follow tutorials. Regular maintenance of the
interface is also essential as data, software programs, and op-
erating systems are continually updated. Few of the reviewed
biomedical genomic applications come with a graphical interface.
Given the rapid rate of new genomic discoveries, it is crucial
for researchers and biotechnology companies – who develop
and maintain these software programs – to collaborate closely.
This collaboration ensures the constant updating and enhance-
ment of these tools, keeping them at the forefront of the latest
developments in genomic research. Furthermore, rather than
relying solely on retrospective experiments, conducting product
testing procedures facilitated by biotechnology companies could
be an effective approach to ensuring the feasibility of AI-assisted
applications.

7.3. AI chatbots, trusting the AI output and ethical consideration

Since November 2022, an AI chatbot powered by Genera-
tive Pre-trained Transformers (GPT) has made significant strides
globally. Within six months following the release of the public
chatbot, ChatGPT, it attracted more than 1 billion users. These
users employed it for tasks ranging from code writing and trans-
lation to crafting speeches and emails. Recently, the concept of
using GPT-4 as a medical AI chatbot garnered substantial atten-
tion [156]. Potential applications, such as medical note-taking and
consultation, were tested with GPT-4. However, tasks specifically
related to genomics remain largely unexplored. One particular
task that could be well-suited for a medical chatbot is inter-
preting genomic findings for patients—a task usually undertaken
by genetic counselors. Nonetheless, before deploying chatbots in
clinical settings, it is crucial to understand clinicians’ perspectives
on incorporating these AI-generated results into their practice —
in other words, to what extent can clinicians trust the output of
AI?

As emphasized in previous review sections, the trustworthi-
ness of developed AI applications remains to be substantiated,
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nd regulation of AI-assisted biomedical applications is still un-
ertain. Regulatory bodies such as the U.S. Food and Drug Admin-
stration (FDA) and Australia’s Therapeutic Goods Administration
TGA) have yet to provide explicit guidelines for using AI in
edicine. Although current documentation for software-based
edical devices mandates standard random double-blinded clin-

cal trials for approval, this framework may not be suitable for
I-based genomic applications. Hence, it is imperative that clear
uidelines for AI applications in clinical genomics are established
y regulatory agencies like the FDA and TGA, both for commercial
iability and ethical compliance. It is crucial to acknowledge
hat establishing such standards and regulations should not fall
o a single agency alone. Specifically in the field of computer
cience, AI algorithm developers ought to assume a pivotal role
n cultivating a responsible AI environment. By fostering ethi-
al practices, prioritizing transparency, and ensuring fairness as
undamental requirements of AI modeling, developers can signif-
cantly contribute to the responsible use and progression of AI in
enomics and healthcare.

. Summary

This review utilized our proposed framework for identifying
elevant resources for AI-driven biomedical genomic research,
ocusing on human genomic analysis using a variety of machine
earning algorithms. The AI techniques discussed include con-
entional machine learning, deep neural networks, convolutional
eural networks, transfer learning, computer vision architectures,
raph representation learning, and natural language processing.
ach has proven its value in genomic analysis. Conventional ma-
hine learning offers an intuitive and explainable method to
resent results. DNNs and CNNs delve into the hierarchical fea-
ures of genomic data, leading to improved performance at the
ost of increased computational power. Transfer learning ad-
resses the challenge of imbalanced data. Meanwhile, advance-
ents in computer vision, natural language processing, and graph

epresentation learning have explored various data formats to
ddress specific challenges.
Next, we highlighted the types of biomedical applications –

anging from disease prevention and early detection to diag-
osis, treatment, and prognosis evaluation – discussed in these
I-centric studies. We identified challenges from algorithm de-
elopment and knowledge base creation to ethics, alongside po-
ential solutions. We aim for this work to spark further collab-
ration between researchers and industry professionals, leading
o the development of more high-performance, practical genomic
pplications in the biomedical field.
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